Network Analysis on Ebola Epidemic

EECE 506 - GROUP 5 DECEMBER 4, 2014 BY AKHILA CHIGURUPATI SAHITHI SREE GUDAVALLI NAOKI KITAMURA MORGAN YAU

Outline

Background Math Problem • Assumptions Methodology • SIS, SIR, and SEIR Models Calculation Simulation Results Future Improvements

Background

- Ebola Virus EBOV, Zaire ebolavirus
- Infectious disease
 with high case fatality
 Zoonotic pathogen
- Symptoms
 - Fever, Fatigue
 - Vomiting, Diarrhea
 - Hemorrhage

Figure 1: Ebola virus

Assumptions

- Given data from Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) is correct
- Incubation or latency period: 2 to 21 days
- Average time for death is 10 days after symptoms
- Has not evolved into airborne transmission
- There is no vaccine for this infectious disease
- For initial population, no individual diagnosed with symptoms

SIS Model

Figure 5: SIS Model

- Parameters:
 - \circ S: Susceptible
 - \circ I: Infectious
 - $\circ \beta$: Contact rate
 - $\circ \Upsilon$: Recovery rate
 - μ and μ*: Death/Birth rates
 - N: Total population

Equations Involved

- Total Population: N=S(t)+I(t)
- Rate of susceptible over time:
 - $dS/dt = -\beta SI/N + (\gamma + \mu)I$
- Rate of infectious over time:
 - $dI/dt = \beta SI/N (\gamma + \mu)I$

Where, $\beta SI/N$ indicates how infected people transfer the disease to susceptible

- Reproductive number Ro=βI where,
 - Ro <1 :infection will decrease and become null
 - Ro >1 :disease is considered infectious

SIR Model

 Parameters:

 Same variables used in SIS Model
 R: Recovered with Immunity or removed due to death
 α: Immunity loss rate

Equations Involved

- N=S(t)+I(t)+R(t)
- $dS/dt = -\beta SI/N + \mu(N S) + \alpha R$
- $dI/dt = \beta SI/N (\gamma + \mu)I$
- $dR/dt = \gamma I \mu R \alpha R$

Where, β SI/N indicates how infected people transit the disease to susceptible

- Reproductive number is given by Ro= $\beta/\gamma+\mu$ where,
 - \circ Ro < 1 : infection will be cleared from the population.
 - Ro > 1 : pathogen is able to invade the susceptible population.

Parameters:

Same variables used in SIR Model
E: Individuals exposed to virus that don't show symptoms and are not contagious
c: Constant that determines how likely to become infectious after exposure per individual

Equations Involved Function of susceptible over time: $\frac{dS}{dt} = \frac{-\beta S(I+qE)}{N}$ Function of virus exposure over time: $\frac{dE}{dt} = \frac{\beta S(I+qE)}{N} - \delta E$ Function of infectious over time: $\frac{dI}{dt} = \delta E - \gamma I$ Function of recovery over time: $\frac{dR}{dt} = \gamma I$ Reproductive number: $R_0 = (\beta/\gamma)(1 + q\gamma/\delta)$

Reproductive number:
$$R_0 = \frac{\epsilon\beta}{(\epsilon + \mu)(\gamma + \mu)}$$

Calculations

- Given:
 - Data I(t) and R(t) from CDC
- From assumption:
 - μ=o
 - **α=0**
 - \circ 1/ ϵ = 21 days
 - \circ 1/ γ =10 days
 - **Ro=?**
- Ro= $(\beta / \gamma)(1 + q^* \gamma / \epsilon)$
- *q is an arbitrary number from 0 to 1

Finding β

- Daily infectious rate:
 - $dI/dt = \epsilon E (\gamma + \mu)I = 0$ During Latency Period
- Cumulative latent data:
 - $E=\gamma^*\epsilon^*I(t)$
- Daily latent data:
 - $dE/dt = \beta(I+q^*E)-\epsilon^*E$
- Total infectious cases:
 - I=σ*γ*E
- $dE/dt = (\beta(\epsilon^*\gamma \epsilon))E <=$ Linear fit with Matrix
- Effective contact rate:
 - β =Linear fit slope/($\epsilon^*\gamma$ - ϵ)

Results

• Reproduction Number: $Ro = 2 \le R0 \le 6$

Figure 9: Reproductive number values of infectious diseases

Transmission	R ₀
Airborne	12–18
Airborne droplet	12–17
Saliva	6–7
Airborne droplet	5–7
Fecal-oral route	5–7
Airborne droplet	5–7
Airborne droplet	4–7
Sexual contact	2–5
Airborne droplet	2-5 ^[2]
Airborne droplet	2–3 ^[3]
	Airborne Airborne droplet Saliva Airborne droplet Fecal-oral route Airborne droplet Airborne droplet Sexual contact Airborne droplet

Results

- SIS Model doesn't include recovery case
- SIR model is missing the consideration of a latency period
- On comparing the three models, SEIR model calculations were the most accurate
 - Incubation period
- Graph results

Figure 10: Cumulative reported cases in West Africa

Future Improvements

- SEIR model limitation Population size
- Using a continuous model
 - By integrating continuous variables over a time span in the above equations, we can obtain more realistic and feasible results.

• Use new parameters

- Ebola virus evolves into different transmissions
- There is a cure or vaccine discovered
- Environment conditions
 - Quarantine

Current News

- Current death toll is about 7,000
- Setting up more Ebola Treatment Units in West Africa
- Vaccine currently in trial stage

Figure 11: Participant receiving dose of vaccine

Programming Code			
<pre>% EECE 506 % Project (Ebola Outbreak) clear all close all clc %% Given sigma=1/21; % 21 days for 90% of t</pre>	he individual who was latent bed	comes infectious	<pre>%% Finding E(t) t=1:1:21; E=gamma*I/sigma; dE=diff(E); [r,m,b] = regression(t',dE)</pre>
<pre>gamma=1/10; % Average of 10 days for death after the individual become infectious N=22400000; %West Africa(Liberia, Guinea, Sierra Leone) Total Population %% R(t) R=[59 60 77</pre>		Y_hat=A*E(t); %Linear Fit Line figure(4)	
<pre>dI=diff(I); figure(2) plot(I) title('I(t)') xlabel('days(Recorded)') ylabel('Cumulative Infected Cases') %dI(t)/dt should be plotted for positive %death on I(t). Also It is exactly same</pre>			<pre>plot(E) title('E(t)') xlabel('Days(Recorded)') ylabel('Cumulative Latent data') figure(5)</pre>
figure(3) %% Find S(t) bar(dI) S=N-E-I-R; title('dI/dt') figure(6) xlabel('days(Recorded)') plot(S) ylabel('Infected Cases') title('S(t)') xlim([0 65]) xlabel('Days(Recorded)') ylim([0 4000]) ylabel('Susceptibles')		<pre>hold on bar(dE(t)) plot(Y_hat) title('dE/dt)')</pre>	
	<pre>%% Find Beta the contact rate B=A/(sigma/gamma-sigma) %% Find R0 q=0:0.05:1; %arbitrary weight R0=(B/gamma).*(1+q*gamma/sigma) %E figure(7) plot(q,R0) title('R0 vs q') xlabel('q') ylabel('R0')</pre>	qualed to 2 <r0<6< td=""><td><pre>xlabel('Days(Recorded)') ylabel('Latent data')</pre></td></r0<6<>	<pre>xlabel('Days(Recorded)') ylabel('Latent data')</pre>

References

- [1] http://media1.s-nbcnews.com/i/newscms/2014_40/586866/140727ebola-jms-2109_1ed47d529151d5ad829c219cb5173ced.jpg
- [2] http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6343a3.htm?s_cid=mm6 343a3_w
- [3, 4] http://www.cs.cornell.edu/home/kleinber/networks-book/networksbook-ch21.pdf
- [5, 6, 7] https://wiki.eclipse.org/Introduction_to_Compartment_Models
- [8] Programming Code (MATLAB)
- [9] http://en.wikipedia.org/wiki/Basic_reproduction_number#cite_note-4
- [10] http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/cumulativecases-graphs.html
- [11] http://www.nih.gov/news/health/nov2014/niaid-28.htm

