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Abstract—This paper presents an optimal preventive control
(OPC) method to improve the power system transient stability via
tuning the transient parameter of virtual synchronous
generators. The novelty of this work is that we formulate the
preventive control as an optimization problem so that inverter
parameters can be adjusted at the pre-contingency stage. A
reinforcement learning (RL)-driven method is proposed to solve
the OPC problem with the fault energy-based reward function.
An ANDES-based RL environment is also developed. Versatile
functions included in the proposed environment have been
presented in this paper. The proposed OPC formulation, the RL-
driven method, and the fault energy-based reward function are
verified on several standard test systems.

Index Terms—Inverter-based resources, virtual synchronous
generators, preventive control, reinforcement learning, training
environments

[. INTRODUCTION

The generation of electrical energy systems is currently
shifting from centralized thermal units to distributed inverter-
based resources (IBRs) [1]. In this context, research on
integrating IBRs into the grid has attracted much attention.
However, recent studies have pointed out that adding inverters
into the system can impact the transient behavior of the system
[2]. Improving the transient stability of power grids with mixed
virtual synchronous generators (VSGs) and synchronous
generators is still an open question.

In general, control methods for improving transient
stability can be divided into emergency control and preventive
control. Emergency control tracks the system’s trajectory after
the fault is detected and forces the trajectory to converge to a
stable equilibrium point (s.e.p). Preventive control adjusts the
operating point in the pre-contingency stage to improve the
fault ride-through capability of the system [3]. Unlike
emergency control that has occurred during the contingency,

preventive control needs to consider all potential contingencies.

On one hand, the challenge of plant-level emergency control is
to have a control algorithm that could recognize a fault event,
make decisions based on limited information, and execute the
control action in real-time (less than one second). On the other
hand, an ISO/TSO-level preventive control that can perform
offline simulations based on estimated fault conditions but has
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amuch larger parameter space needs to be searched and a great
uncertainty on the pre-fault power flow conditions.

Preventive control can essentially be modeled as an
optimization model that maximizes the overall transient
stability under various potential contingencies on the system
with a given pre-contingency stage [4]. Several studies have
analyzed the transient stability metrics at the pre-contingency
stage. For example, basin stability [5] and energy function-
based methods such as [6] can provide reliable assessments for
transient stability. However, their complex mathematical
expression and high computation time make them difficult to
apply to tractable optimization paradigms.

With the rise of artificial intelligence methods in recent
years, data-driven transient stability metrics such as [7] are
also proposed for pre-contingency. Based on these data-driven
metrics, the transient stability preventive control is usually
formulated as a transient stability constrained-optimal power
flow (TSC-OPF) problem [8]. TSC-OPF simultaneously
satisfies the systematic economic and stability requirements by
formulating the stability requirement as mandatory constraints
to the optimal power flow model. The controlled variables of
TSC-OPF are limited only within steady-state variables. Many
works have verified that tuning the transient parameters of
generators and VSGs effectively improves transient stability
[2]. However, the transient models of the generators/VSGs are
highly non-linear, resulting in poor compatibility with high-
speed optimization techniques. Therefore, searching for the
optimal transient parameters is still challenging.

This paper proposes a novel optimal preventive control
(OPC) model to address the above limitations. At the pre-fault
stage, the proposed OPC further enhances the transient
stability via adjusting the transient parameters of various
machines in the power grid based on the optimal power flow.
Our contribution is summarized below:

e A transient-based OPC model is proposed in this paper
to maximize the transient stability under various
potential contingencies on the system at the pre-
contingency stage.

e An RL environment for the OPC problem is proposed.
On top of the Andes simulator, this environment
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provides plentiful user-customized functions for OPC-
oriented training, testing, and demonstration.

e  Areinforcement learning (RL)-driven solution method
is proposed for the OPC model. Also, a novel fault
energy-based reward function is proposed, achieving
satisfactory training and testing performance.

The rest of the paper is organized as follows: Section II
provides a new problem formulation of OPC with respect to
tuning control parameters’ inner VSG models. The RL-driven
OPC is also described in this section. Section III introduces the
proposed environment. Section IV presents case studies of the
RL-driven OPC on several test systems. Finally, the
conclusion is provided in Section V.

II. PROBLEM FORMULATION OF RL-DRIVEN OPC

A. Optimal Preventive Control Problem

For a power system with fixed network topology and given
pre-fault power flow p, its transient stability can be determined
by the contingency A and the transient parameters x of
machines in the grid. Therefore, we have the following
mapping:

{SA = fA(x'p) (1)

AeT®

where s, is a selected metric to measure the power system's
stability level, such as transient stability index (TSI), critical
clearing time (CCT), etc. We assume a set of pre-defined
contingencies I1* is given. Equation (1) indicates that £, (-, p)
measures the stability level with machines’ transient
parameters as input under various contingencies.

The OPC problem can be described in a concise form:

max Z Sp*Ya (2a)
* Aerid
s.t. sy = falx,p) (2b)

where v, is a user-customized weight associated with a pre-
defined contingency.

B. Candidate Transient Stability Metrics

The selection of transient stability metric s, is a key to
achieving satisfactory OPC performance. In this work, two
established and one proposed transient stability metrics forms
a candidate set. They are CCT, TSI, and fault energy (FE).
These three metrics are introduced as follows:

1) Critical clearing time: The longest contingency duration
that a system’s trajectory can converge to an s.e.p is called
CCT. CCT is deterministic if x, p, and A are given. To apply
CCT to (2), we have the following:

fa(x,p) = CCTy(x, p) 3)

2) Transient stability index: TSI is a well-known transient
stability metric which is defined as follows:
360° — |[§™ax|
360° + |§™max|
where 6™ is the maximum rotor angle difference between
any two generators at any point of the system’s trajectory. The
system is transient stable when TSI >0. To apply TSI to (2)

fa(x, p) = TSIx(x, p) (%)

3) Fault energy: the concept of FE is proposed in this work
as a novel transient stability metric. FE measures the scale of

TSI = x 100%, 4)
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oscillating sources in the system. The oscillating source of a
single generator or VSG i is the power difference

Py i(t) = Pppi(6) — Pei(2). (6)
P, and P, are the mechanical and electrical power of the
machine. Py is also known as the fault power of the machine in
this work. The FE for a single machine can thusly be defined
as follows:

t
Eqi(t) = || Pri(t)adt]. @)
tr
ts is the starting time of a contingency. To apply FE to (2):

fa(x,p) = —Z Ef;(t),G = {machines}. (8)

i€G
C. RL-driven OPC

The OPC model (2) is highly non-linear as it contains the
differential equations of transient models. Such constraints are
incompatible with most high-speed optimization paradigms,
e.g., convex optimization. RL is a machine learning technique
that enables agents to learn the optimal control policy offline
and execute control action online. To solve model (2), we train
an RL agent to obtain the OPC policy and use the well-trained
agent as the online optimal preventive controller subject to (2).

The RL agent optimizes its control policy by repeated
interference with a simulated power system. To summarize,
the RL training has the following major components:

Observation state: The pre-contingency operating point p.

Action: The agent is trained the adjust the [virtual inertial,

virtual damping, active power set point, reactive power

setpoint] in inner control loops of VSGs. For simplicity, we
only adjust the parameter on VSGs. Note that our method
is general and can be extended to the control of generators.

Reward: After one-step training, a reward will be returned

to evaluate the action for the state. The reward in this work

can be the calculation result of (3), (5), and (8).

Reset: A new contingency will be randomly generated and

assigned to the environment. This process is also known as

resetting the environment to ensure the RL agent can deal
with various contingencies.

Training Goal: The training goal of the RL agent is to

maximize the reward under different contingencies.

III. THE PROPOSED ENVIRONMENT FOR RL-DRIVEN OPC

A. Modeling and Simulation with ANDES

This work utilizes the ANDES simulator for transient
stability simulation [9]. Written in Python, ANDES is ideal for
research prototyping of differential-algebraic equations-based
models and machine learning algorithms. ANDES is also
optimized for performance to meet the need for simulating
many scenarios, including the efficient KLU sparse linear
solver and the support for compiling compute kernels using
Numba. In addition, Andes gym, an ANDES-based RL
environment, is available [10].

B. Implementation of the Environment

Fig. 1 shows the architecture and components of the
proposed RL training environment. The architecture consists
of an ANDES simulator, a reward calculation module, and an
OpenAl Gym-based environment port.
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Fig. 1. Architecture of the proposed environment for RL.

The proposed RL environment utilizes ANDES to simulate
the system dynamic after the contingency information is given
and the test case is prepared. Because all potential
contingencies are considered in the OPC, a port for the
compactly switch of contingencies is reserved in the
environment. Furthermore, considering OPC's objective can be
diverse if the environment is open source, we also reserve a
port for switching the customized reward function. The reward
calculation module calculates the reward based on the selected
reward signal and the simulated dynamic. The simulation
result and reward are wrapped and organized into OpenAl
Gym specifications. OpenAl Gym is a widely used RL toolkit.
Gym provides abstractions for environments to adapt to
various styles of RL agents.

C. User-Customized Functions

Under the above architecture, the proposed environment
provides versatile customized functions for training, testing,
and demonstration purposes. Major functions include:

1) RL basic components: initialize(), step(), and reset() are
three basic functions for general-purpose RL environments,
which are used to set up the environment, conduct one-step
training and testing, and reset the environment.

2) CCT calculation: We provide a mature function to
search the closest unstable equilibrium point (u.e.p) to the pre-
contingency s.e.p in time via the bi-section algorithm.

3) Rotor angle difference plotting: rotor angle difference
stability is an important stability criterion for power system
transient stability. We provide a function to plot rotor angle
differences with the customized reference machine number.

4) A curriculum learning-based training framework: We
notice that the designed rewards have limited capability to
reflect an action's contribution to the transient stability if the
contingency duration can be picked in a wide range. For
example, a system with a 0.2 s contingency duration will have
a greater chance to return a higher reward than a system with a
0.5 s contingency duration. That is, an agent gets a higher

-

[ Sample Contingency Duration J

from [0.1+0.1*d;, 0.2+0.1%d] s

1
Contingency d=d+1
Setting

Environment in
Fig. 1

eet the increase
requirement?

Fig. 2. A curriculum learning-based training framework.
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reward in the 0.2 s contingency system doesn’t mean its control
actions are better than the agent in the 0.5 s contingency
system, simply because the tasks for the two agents are
different. To this end, we also include a function to invoke a
proposed curriculum learning-based training framework.
Curriculum learning is a concept in training that trains a model
from easier tasks to harder tasks [11]. The proposed framework
separates the training into several difficulty levels d;, of which
each d; corresponds to a narrow interval for sampling random
contingency durations. The &; will gradually increase if the
user-customized increase requirement is satisfied. The
flowchart of the proposed framework is shown in Fig. 2.

IV. CASE STUDIES

This section verifies the effectiveness of the proposed OPC
on two designed test systems. We will first introduce the
general experiments setting and then analyze the case studies
on three test systems.

The proposed OPC and RL-driven solution is trained and
tested on the proposed environment. The transient model and
parameters of generators and VSGs used in the simulation can
be found in ANDES [9]. The Advantage Actor Critic (A2C)-
based RL agents are applied via the RL implementation tool
Stable-Baselines. The maximum training episodes is set to
1000. The proposed -curriculum learning-based training
framework is utilized in all cases, and the difficulty level will
increase if the stable ratio is larger than 70% in the last 10
training episodes.

A. Case I: A Single Generator Plus Single VSG system

We start with a simple system in our first case study, the
design of which is shown in Fig. 3. The system consists of a
classical generator model and a voltage-controlled VSG model.
Two transmission lines connect two machines. The generation
and load on the two buses are symmetrical. Assume the three-
phase-to-ground fault can occur on location 1 or 2. The 5% and
90% in Fig. 3 are ratios of electrical distance. An RL-based
controller is applied to preventively control the transient
parameters of VSG2.

In RL training, it is natural to track the learning progress of
the agent by monitoring the reward varies with the training
episode. Fig. 4 shows the reward vs. episodes in training using
the TSI-based reward function on the G+VSG system. The
moving average reward for the latest 10 episodes is also
included to remove inevitable perturbations on reward caused
by exploration. As shown, the TSI-based RL agent has
converged to an optimum after 600 episodes of training.
Besides, the difficulty level of the training will be gradually
increased as the curriculum learning framework is utilized. We
represent increasing difficulty levels in the figure by using
different-colored backgrounds. Since different difficulty levels

Fault Location 1 Fault Location 2

1 2
5% 90% 5%
{Ll L2rl

Fig. 3. The designed single generator plus single VSG (G+VSG) system.
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Fig. 4. The reward vs. episodes in training using TSI-based reward on

the G+VSG system. Different-colored backgrounds denote the increasing

difficulty levels in the proposed curriculum learning framework.
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TABLE I. CCT RESULTS ON THE G+VSG SYSTEM

Fault Reward Training Original ~ CCT after
Location Function Time CCT (s) OPC(s)
1 FE 49 minutes 0.71 2.71
1 TSI 45 minutes 0.71 3.00
2 FE 37 minutes 0.55 2.92
2 TSI 40 minutes 0.55 3.00

directly correspond to different CCTs, Fig. 4 also enables users
to predict the current CCT of the system in the training process.

We train RL-based optimal preventive controllers with
different reward functions and test the well-trained controllers
under various contingencies. CCT is one of the most reliable
and straightforward transient stability metrics. However, the
CCT is computationally complex, and training time can be
multiplied relative to using TSI or FE as the reward function.
Therefore, we train controllers with TSI and FE as the reward
and evaluate the trained agents using CCT as the transient
stability metric. The evaluation results are summarized in
Table 1. As shown, the G+VSG system with a trained
controller can improve at least 2 seconds in CCT.

To better understand the impact of the proposed OPC on
transient dynamics, we also compare the system's time domain
simulations before and after the application of the OPC.

40

— 1 Before OPC

— = V5G2 Before OPC
—— 1 After OPC
== VS5G2 After OPC

Rotor Angle [rad]
[ w

o [=]

1 1

=
o
1

Time[s]

—— W5GZ - G1 Before OPC
— W5GZ - G1 After OPC

Rotor Angle Difference [rad]

_1 " - T ; T T
0 2 4 6 8 10
Time[s]
Fig. 5. The impact of OPC on the when fault durations on the G+VSG
system equal their own CCTs: Comparison of rotor angle dynamic
(Upper). Comparison of rotor angle difference dynamic (Lower).
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Fig. 6. The designed 4-bus 4-machine (4B4M) system.

Limited by space, the last tested case in Table I (Fault location
=1, Reward = TSI) will be used as an example to show time
domain results. We compare the dynamics with and without
OPC when fault durations equal their own CCTs in Fig. 5. The
tr denotes the starting time of the fault. #; is the fault clearing
time without OPC, and ¢.. is the clearing time with OPC. Since
t.> is much larger than #.;, the oscillation on angles inevitably
increases on the system supported by OPC. However, OPC can
still mitigate the oscillation on angle difference.

B. Case Il: A 4-Bus 4-Machine System

The proposed OPC is also tested on a 4-bus 4-machine
(4B4M) system, as shown in Fig. 6. The system consists of
four classical generator models. Four transmission lines
connect four machines. The generation and load on four buses
are symmetrical. Assume the three-phase-to-ground fault can
occur on location 1 or 2. An RL-based controller is applied to
control the transient parameters of one or more than one VSG.

We assume every generator in the system can be replaced
by a VSG model supported by OPC. For example, controlled
VSG on bus 2 denotes that an OPC VSG replaces the generator
on bus 2. If the system contains more than one VSG, the RL-
based controller will be trained and tested to control multiple
VSGs simultaneously. As shown in Table II, OPC can
effectively improve CCTs on the 4B4M system.

We also compare the time domain simulations before and
after the OPC was applied to the 4B4M system. The last tested
case in Table II (Controlled VSGs on Bus = [2, 3, 4], Fault
location = 1, Reward = TSI) is used to demonstrate time
domain results. Fig. 7 compares the dynamics with and without

TABLE II. CCT RESULTS ON THE 4B4M SYSTEM

Controlled  Fault Reward Tra'ining Origin CCT

VSGs on on Function Tlme CCT after
Bus Bus (minute) (s) OPC(s)

2 1 FE 29 0.74 0.80

2 1 TSI 33 0.74 1.85

2 2 FE 52 1.31 1.58

2 2 TSI 49 1.31 222

2,4 1 FE 32 0.54 1.14

2,4 1 TSI 39 0.54 0.97

2,4 2 FE 46 1.59 2.99

2,4 2 TSI 57 1.59 2.99

2,3,4 1 FE 55 0.32 0.71

2,3,4 1 TSI 64 0.32 1.56
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Fig. 7. Comparison of angle difference dynamics in the 4B4M system.

OPC when fault durations on the 4B4M system equal their own
CCTs. As shown, the two tested systems can be stabilized in
almost the same amount of time, while the fault duration of the
system with OPC is much longer than that of the system
without OPC. It is also observed that the oscillation increase in
angle differences is inevitable when the system gets larger
compared with the result in the G+VSG system.

C. Caselll: The 140-bus NPCC System

The proposed OPC is also verified with two scenarios on
the NPCC system [9], as shown in Fig. 8. In scenario 1, the
generator on bus 79 is replaced as a VSG, and the fault occurs
near bus 79. In scenario 2, the generator on bus 36 is replaced
as a VSG, and the fault occurs near bus 36. Fig. 9 shows a
simple case of the NPCC system with a 0.3s fault in scenario
2. Initially, the system lost synchronization. But it can be
stabilized after applying the proposed OPC. We further tested
the CCTs of the two different scenarios. Table III shows that
the OPC can effectively improve CCTs in the tested scenarios.

Hydro
Quebec

Fig.‘8. The 140-bus NPCC test system.

80000
& 60000 g
< 3
= VSG =
[ )
S 40000 )
= g
2 2
o ]
>
2 20000 2
© =
3 . &
0 : s VSG
0.0 25 50 75 100 0 2 4 6 8 10
Time[s] Time[s]

Fig. 9. 50-machine angle difference dynamics of the NPCC system:
Dynamics without OPC (left). Dynamic with OPC (right).
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TABLE III. CCT RESULTS ON THE NPCC SYSTEM

Scenario#  Original CCT (s)  CCT after OPC(s)  Improvement
1 0.145 0.233 60.69 %
2 0.238 0.378 58.82 %

V. CONCLUSION

This paper proposed an OPC problem formulation, which
provides a new method of power system preventive control. In
addition to adjusting the steady-state operating point (P, Q set
points), the transient model parameters (virtual inertia and
virtual damping of the VSG) are also allowed to be tuned at the
pre-contingency stage via our model. An RL-driven method is
proposed to solve the OPC problem using a novel reward
function called the fault energy function. We have verified the
proposed method on various systems. An RL training
environment for OPC is developed. User-customized functions
embedded in the proposed environment for training, testing,
and demonstration are presented in this paper.
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